Dynamic Bayesian Probabilistic Matrix Factorization
نویسنده
چکیده
Collaborative filtering algorithms generally rely on the assumption that user preference patterns remain stationary. However, real-world relational data are seldom stationary. User preference patterns may change over time, giving rise to the requirement of designing collaborative filtering systems capable of detecting and adapting to preference pattern shifts. Motivated by this observation, in this paper we propose a dynamic Bayesian probabilistic matrix factorization model, designed for modeling time-varying distributions. Formulation of our model is based on imposition of a dynamic hierarchical Dirichlet process (dHDP) prior over the space of probabilistic matrix factorization models to capture the time-evolving statistical properties of modeled sequential relational datasets. We develop a simple Markov Chain Monte Carlo sampler to perform inference. We present experimental results to demonstrate the superiority of our temporal model.
منابع مشابه
Autonomous overlapping community detection in temporal networks: A dynamic Bayesian nonnegative matrix factorization approach
A wide variety of natural or artificial systems can be modeled as time-varying or temporal networks. To understand the structural and functional properties of these time-varying networked systems, it is desirable to detect and analyze the evolving community structure. In temporal networks, the identified communities should reflect the current snapshot network, and at the same time be similar to...
متن کاملAnalysis of Variational Bayesian Matrix Factorization
Recently, the variational Bayesian approximation was applied to probabilistic matrix factorization and shown to perform very well in experiments. However, its good performance was not completely understood beyond its experimental success. The purpose of this paper is to theoretically elucidate properties of a variational Bayesian matrix factorization method. In particular, its mechanism of avoi...
متن کاملBayesian Matrix Factorization with Non-Random Missing Data using Informative Gaussian Process Priors and Soft Evidences
We propose an extended Bayesian matrix factorization method, which can incorporate multiple sources of side information, combine multiple a priori estimates for the missing data and integrates a flexible missing not at random submodel. The model is formalized as probabilistic graphical model and a corresponding Gibbs sampling scheme is derived to perform unrestricted inference. We discuss the a...
متن کاملLinearly constrained Bayesian matrix factorization for blind source separation
We present a general Bayesian approach to probabilistic matrix factorization subject to linear constraints. The approach is based on a Gaussian observation model and Gaussian priors with bilinear equality and inequality constraints. We present an efficient Markov chain Monte Carlo inference procedure based on Gibbs sampling. Special cases of the proposed model are Bayesian formulations of nonne...
متن کاملSurvey on Probabilistic Models of Low-Rank Matrix Factorizations
Low-rank matrix factorizations such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF) are a large class of methods for pursuing the low-rank approximation of a given data matrix. The conventional factorization models are based on the assumption that the data matrices are contaminated stochastically by some type of noise. Thus t...
متن کامل